Anhang Der Umgang mit Chemikalien

GHS

Globally Harmonized System

H-Sätze

H von Hazard Statements

P-Sätze

P von Precautionary Statements Die Etiketten von Chemikaliengefäßen, die Gefahrstoffe enthalten, werden ab dem 1.12.2010 für Reinstoffe und ab dem 1.6.2015 für Gemische nach einem neuen, weltweit gültigen System erstellt, dem GHS. Einige Zeichen bleiben dabei erhalten, andere Zeichen kommen jedoch neu dazu [B1, B2].

Kennzeichnung nach GHS. Damit schon auf den ersten Blick die wichtigsten Informationen über die Gefährlichkeit und den Umgang mit dem jeweiligen Gefahrstoff erkennbar sind, verfügt ein Chemikalienetikett nach GHS [B5] über zahlreiche Hinweise. Hierzu gehören: die Gefahrenpiktogramme, die Gefahrenhinweise (H-Sätze), die Sicherheitshinweise (P-Sätze) und die Signalwörter.

Gefahrenpiktogramme. Die neun Gefahrenpiktogramme (GHS01 bis GHS09) ermöglichen eine schnelle Information über die Hauptgefahr eines Stoffes.

Gefahrenklasse. Je nach seiner Gefährlichkeit gehört ein Gefahrstoff zu mindestens einer Gefahrenklasse. Ein Gefahrenpiktogramm umfasst häufig mehrere Gefahrenklassen [B2]. So kann z. B. das Gefahrenpiktogramm GHS05 (Ätzwirkung) bedeuten, dass der Stoff zu der Gefahrenklasse "Metallkorrosiv", "Hautreizend",

"Hautätzend", "Schwere Augenschädigung" oder "Augenreizung" gehört.

Gefahrenkategorie. Eine Gefahrenklasse wird zur genaueren Kennzeichnung weiter in Gefahrenkategorien untergliedert.

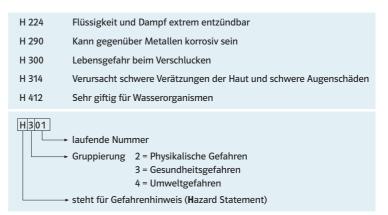
Bezeichnung	Gefahrenklasse
GHS01	Explosive
(Explodierende	Stoffe, Selbstentzünd-
Bombe)	liche Stoffe u.a.
GHS02 (Flamme)	Entzündbare Flüssigkeiten,Entzündbare Gase u. a.
GHS03 (Flamme über einem Kreis)	 Entzündend wirkende Flüssigkeiten und Feststoffe, Entzündend wirkende Gase
GHS04	- Unter Druck
(Gasflasche)	stehende Gase
GHS05	Metallkorrosiv,Hautätzend,Hautreizend
(Ätzwirkung)	u.a.
GHS06 (Totenkopf mit gekreuzten Knochen)	- Akute Toxizität
GHS07	Hautreizend,Augenreizend,Sensibilisierung
(Ausrufezeichen)	der Haut u.a.
GHS08	Krebserzeugend,Erbgut-
(Gesundheits-	verändernd
gefahr)	u. a.
GHS09	– Gewässer-
(Umwelt)	gefährdend
	GHS01 (Explodierende Bombe) GHS02 (Flamme) GHS03 (Flamme über einem Kreis) GHS04 (Gasflasche) GHS05 (Ätzwirkung) GHS06 (Totenkopf mit gekreuzten Knochen) GHS07 (Ausrufezeichen) GHS08 (Gesundheitsgefahr)

B2 Gefahrenpiktogramme und ihre Bedeutung (vereinfacht) nach GHS

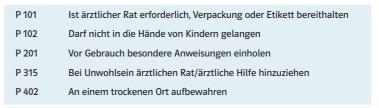
Symbol	Kennbuchstabe, Gefahrenbezeichnung	Symbol	Kennbuchstabe, Gefahrenbezeichnung
	T+ Sehr giftig		E Explosionsgefährlich
	T Giftig		0 Brandfördernd
×	Xn Gesundheitsschädlich		F+ Hochentzündlich
×	Xi Reizend		F Leichtentzündlich
	C Ätzend	*	N Umweltgefährlich

B1 Bisherige Gefahrensymbole und ihre Bedeutung

So ist z.B. die Gefahrenklasse "Entzündbare Flüssigkeiten" in die Gefahrenkategorie 1 ("Flüssigkeit und Dampf extrem entzündbar"), in die Gefahrenkategorie 2 ("Flüssigkeit und Dampf leicht entzündbar") und in die Gefahrenkategorie 3 ("Flüssigkeit und Dampf entzündbar") unterteilt.

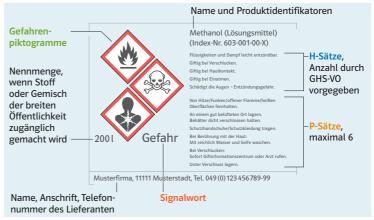

Signalwörter. Signalwörter sind neue Kennzeichnungselemente. Sie geben Auskunft über den relativen Gefährdungsgrad eines Stoffes oder eines Stoffgemisches. Es gibt zwei verschiedene Signalwörter:

Gefahr	Gefahrenkategorien
Achtung	für weniger schwerwiegende Gefahrenkategorien

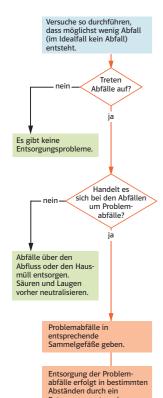

Für den Fall, dass ein Stoff zu unterschiedlichen Gefahrenklassen gehört, die beide Signalwörter nach sich ziehen, wird nur das Signalwort "Gefahr" verwendet.

Gefahrenhinweise (H-Sätze). Eine genaue Kennzeichnung der Gefährdung wird durch die Angabe eines H-Satzes erreicht. H-Sätze sind Gefahrenhinweise und mit den bisherigen R-Sätzen vergleichbar. H-Sätze sind so aufgebaut, dass die erste Ziffer angibt, ob von dem Gefahrstoff hauptsächlich physikalische Gefahren, Gesundheitsgefahren oder Umweltgefahren ausgehen [B3]. Die beiden folgenden Ziffern bilden dann einen standardisierten Textbaustein, der die von dem Stoff ausgehenden Gefahren näher beschreibt.

Sicherheitshinweise (P-Sätze). P-Sätze sind Sicherheitshinweise und mit den bisherigen S-Sätzen vergleichbar. P-Sätze sind wie die H-Sätze so aufgebaut, dass die erste Ziffer angibt, auf welchen Bereich sich der Sicherheitshinweis bezieht, z. B. auf eine Vorsorgemaßnahme oder auf die Entsorgung [B4]. Die beiden folgenden Ziffern bilden dann einen standardisierten Textbaustein, der die Sicherheitshinweise näher beschreibt.



B3 Aufbau eines H-Satzes mit Beispielen



B4 Aufbau eines P-Satzes mit Beispielen

B5 Neues Gefahrstoff-Etikett nach GHS

Anhang Entsorgung von Chemikalienabfällen

B1 Abfälle beim Experimentieren

Nach der Durchführung von Experimenten bleiben oft Abfälle (z.B. Chemikalienreste oder Reaktionsprodukte) zurück. Diese Abfälle können gesundheits-, luft- oder wassergefährdend, explosionsgefährlich oder brennbar sein. Nach dem Abfallgesetz werden solche Abfälle als Problemabfälle bezeichnet. Zur Entsorgung der Problemabfälle stehen im Chemieraum geeignete Sammelgefäße zur Verfügung. Bleiben z.B. nach einem Experiment Benzinreste zurück, so dürfen diese nicht einfach in den Ausguss gegeben werden, da sie auf diese Weise über das Abwasser in die Umwelt gelangen würden. Die Benzinreste müssen deshalb in ein Sammelgefäß für organische Lösungsmittel gegeben werden. Die gesammelten Abfälle werden in bestimmten Abständen von einem Entsorgungsunternehmen abgeholt und wiederaufbereitet oder als Sondermüll beseitigt (Müllverbrennung oder Sondermüll-Deponierung [B2]).

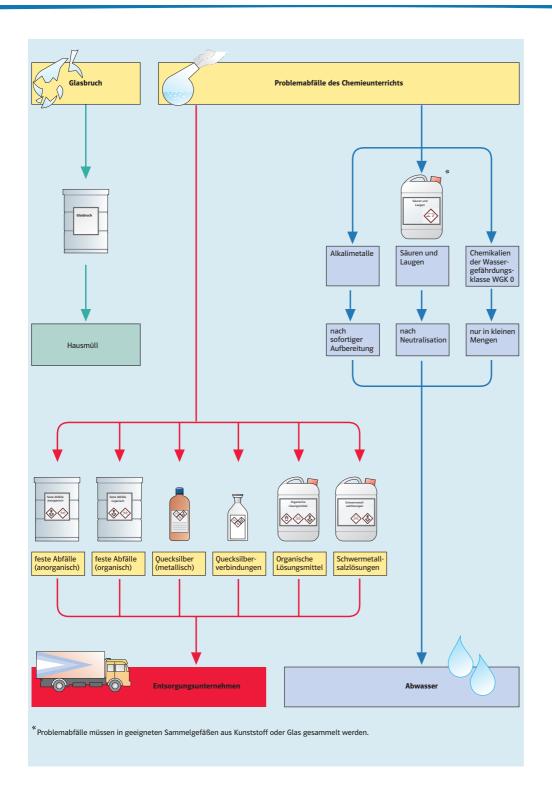
Möglichst wenig Abfälle. Besonders im Chemieunterricht gilt der Grundsatz Abfälle möglichst zu vermeiden [B1]. Gerade die Entsorgung von Problemabfällen ist oft schwierig und mit Umweltgefährdungen verbunden. Bei der Versuchsdurchführung sind deshalb nur möglichst kleine Stoffportionen zu verwenden. In der Regel wird ein Versuchsergebnis durch die Verwendung größerer Stoffportionen nicht verbessert. Entscheidend ist die sorgfältige und genaue Durchführung der Versuche.

B2 Lagerung von Sondermüll in einer Untertage-Deponie

Wassergefährdungsklassen. Viele Problemabfälle aus dem Chemieunterricht sind flüssig. Werden sie über den Ausguss beseitigt, können sie unterschiedlich stark die Umwelt belasten. Zur Unterscheidung der Wassergefährdung teilt man die Chemikalien in vier Wassergefährdungsklassen (WGK) ein. Chemikalien, die ungiftig und biologisch abbaubar sind, gehören der Wassergefährdungsklasse 0 an, alle anderen werden je nach ihrem Gefährdungsgrad in die Klassen 1 bis 3 eingestuft.

WGK 0: im Allgemeinen nicht wassergefährdend, z.B. Alkohol (Ethanol) oder Kochsalzlösung

WGK 1: schwach wassergefährdend, z.B. Säuren oder Laugen


WGK 2: wassergefährdend, z.B. Dieselöl oder Benzin

WGK 3: stark wassergefährdend, z.B. Quecksilber oder Quecksilberverbindungen

Nur Chemikalien, die der Wassergefährdungsklasse 0 angehören, dürfen in kleinen Mengen in den Ausguss gegeben werden. Alle anderen Chemikalien müssen zunächst gesammelt und dann entsorgt werden.

Kennzeichnung der Sammelgefäße. Da viele Chemikalienabfälle Gefahrstoffe sind, müssen die Sammelgefäße mit den international gebräuchlichen Gefahrensymbolen gekennzeichnet werden. Bestehen die Abfälle aus einem Gemisch unterschiedlicher Gefahrstoffe, wird mit dem Gefahrensymbol gekennzeichnet, das den gefährlichsten Stoff des Gemisches angibt.

Entsorgungsplan. Bei der Sammlung der Abfälle ist ein Entsorgungsplan nützlich, der in übersichtlicher Form zeigt, in welcher Weise die Chemikalienreste gesammelt und entsorgt werden. Der abgebildete Entsorgungsplan (nächste Seite) zeigt beispielhaft, wie Chemikalienabfälle gesammelt und weitergeleitet werden können. Fallen im Unterricht noch weitere Abfälle an, muss der Plan ergänzt oder abgeändert werden.

Anhang Gefahren- und Sicherheitshinweise: H- und P-Sätze

Instabil, explosiv. H 201 Explosiv, Gefahr der Massenexplosion. H 202 Explosiv; große Gefahr durch Splitter, Spreng- und Wurfstücke. H 203 Explosiv; Gefahr durch Feuer, Luftdruck oder Splitter, Spreng- und Wurfstücke. H 204 Gefahr durch Feuer oder Splitter, Spreng- und Wurfstücke. H 205 Gefahr der Massenexplosion bei Feuer. H 220 Extrem entzündbares Gas. Entzündbares Gas. H 221 H 222 Extrem entzündbares Aerosol. H 223 Entzündbares Aerosol. H 224 Flüssigkeit und Dampf extrem entzündbar. H 225 Flüssigkeit und Dampf leicht entzündbar. H 226 Flüssigkeit und Dampf entzündbar. H 228 Entzündbarer Feststoff. H 240 Erwärmung kann Explosion verursachen. H 241 Erwärmung kann Brand oder Explosion verursachen. H 242 Erwärmung kann Brand verursachen. H 250 Entzündet sich in Berührung mit Luft von selbst.

Gefahrenhinweise für physikalische Gefahren

H 260	In Berührung mit Wasser entstehen entzündbare Gase,
	sich spontan entzünden können.

Selbsterhitzungsfähig, kann in Brand geraten.

In großen Mengen selbsterhitzungsfähig, kann in Brand

H 261 In Berührung mit Wasser entstehen entzündbare Gase.

H 270 Kann Brand verursachen oder verstärken;

Oxidationsmittel. H 271 Kann Brand oder Explosion verursachen;

starkes Oxidationsmittel. H 272 Kann Brand verstärken, Oxidationsmittel.

H 280 Enthält Gas unter Druck; kann bei Erwärmung explodieren.

H 281 Enthält tiefkaltes Gas; kann Kälteverbrennungen oder -verletzungen verursachen.

H 290 Kann gegenüber Metallen korrosiv sein.

Gefahrenhinweise für Gesundheitsgefahren

H 300	Lebensgef	ahr bei \	/erschlucken.
-------	-----------	-----------	---------------

H 301 Giftig bei Verschlucken.

H 251

H 252

H 302 Gesundheitsschädlich bei Verschlucken.

H 304 Kann bei Verschlucken und Eindringen in die Atemwege tödlilch sein.

H 310 Lebensgefahr bei Hautkontakt.

H 311 Giftig bei Hautkontakt.

H 312 Gesundheitsschädlich bei Hautkontakt.

H 314 Verursacht schwere Verätzungen der Haut und schwere Augenschäden.

H 315 Verursacht Hautreizungen.

H 317 Kann allergische Hautreaktionen verursachen.

H 318 Verursacht schwere Augenschäden.

H 319 Verursacht schwere Augenreizung.

H 330 Lebensgefahr bei Einatmen.

H 331 Giftig bei Einatmen.

H 332 Gesundheitsschädlich bei Einatmen.

H 334 Kann bei Einatmen Allergie, asthmaartige Symptome oder Atembeschwerden verursachen.

H 335 Kann die Atemwege reizen.

H 336 Kann Schläfrigkeit und Benommenheit verursachen.

H 340 Kann genetische Defekte verursachen¹

H 341 Kann vermutlich genetische Defekte verursachen¹.

H 350 Kann Krebs erzeugen¹.

H 350i Kann bei Einatmen Krebs erzeugen.

H 351	Kann vermutlich Krebs erzeugen ¹ .
H 360	Kann die Fruchtbarkeit beeinträchtigen oder das Kind im
	Mutterleib schädigen ^{2,1} .
H 360F	Kann die Fruchtbarkeit beeinträchtigen.
	Kann das Kind im Mutterleib schädigen.
H 360FD	Kann die Fruchtbarkeit beeinträchtigen. Kann das Kind im
	Mutterleib schädigen.
H 360Fd	Kann die Fruchtbarkeit beeinträchtigen. Kann vermutlich
	das Kind im Mutterleib schädigen.
H 360Df	Kann das Kind im Mutterleib schädigen. Kann vermutlich
	die Fruchtbarkeit beeinträchtigen.
H 361	Kann vermutlich die Fruchtbarkeit beeinträchtigen oder da
	Kind im Mutterleib schädigen ^{2,1} .
H 361f	Kann vermutlich die Fruchtbarkeit beeinträchtigen.
H 361d	Kann vermutlich das Kind im Mutterleib schädigen.
H 361fd	Kann vermutlich die Fruchtbarkeit beeinträchtigen.
	Kann vermutlich das Kind im Mutterleib schädigen.
H 362	Kann Säuglinge über die Muttermilch schädigen.
H 370	Schädigt die Organe ^{3,1} .
H 371	Kann die Organe schädigen ^{3,1} .
H 372	Schädigt die Organe ⁴ bei längerer oder wiederholter

¹ Expositionsweg angeben, sofern schlüssig belegt ist, dass diese Gefahr bei keinem anderen Expositionsweg besteht

Kann die Organe schädigen4 bei längerer oder

² Konkrete Wirkung angeben, sofern bekannt

wiederholter Exposition.

³ Oder alle betroffenen Organe nennen, sofern bekannt

⁴ Alle betroffenen Organe nennen, sofern bekannt

Gefahrenhinweise für Umweltgefahren

Exposition¹.

H 373

H 400	Sehr giftig für Wasserorganismen.
H 410	Sehr giftig für Wasserorganismen mit langfristiger
	Wirkung.
H 411	Giftig für Wasserorganismen, mit langfristiger Wirkung.
H 412	Schädlich für Wasserorganismen, mit langfristiger
	Wirkung.
H 413	Kann für Wasserorganismen schädlich sein, mit
	langfristiger Wirkung.

Sicherheitshinweise - Allgemeines

P 101	Ist ärztlicher Rat erforderlich, Verpackung oder Etikett
	bereithalten.
P 102	Darf nicht in die Hände von Kindern gelangen.
P 103	Vor Gebrauch Kennzeichnungsetikett lesen.

Sicherheitshinweise - Prävention

P 201	Vor Gebrauch besondere Anweisungen einholen.
P 202	Vor Gebrauch alle Sicherheitsratschläge lesen
	und verstehen.
P 210	Von Hitze/Funken/offener Flamme/heißen Oberflächen
	fernhalten. Nicht rauchen.
P 211	Nicht gegen offene Flammen oder andere Zündquellen
	sprühen.
P 220	Von Kleidung//brennbaren Materialien fernhalten/
	entfernt aufbewahren
P 221	Mischen mit brennbaren Stoffen//unbedingt verhindern.
P 222	Kontakt mit Luft nicht zulassen.
P 223	Kontakt mit Wasser wegen heftiger Reaktion und
	möglichem Aufflammen unbedingt verhindern.
P 230	Feucht halten mit

P 231	Unter inertem Gas handhaben.	P 333	Е
P 232	Vor Feuchtigkeit schützen.	P 334	- 1
P 233	Behälter dicht verschlossen halten.	P 335	L
P 234	Nur im Originalbehälter aufbewahren.	P 336	١
P 235	Kühl halten.		E
P 240	Behälter und zu befüllende Anlage erden.	P 337	E
P 241	Explosionsgeschützte elektrische Anlagen/Lüftungsanla-	P 338	E
	gen/Beleuchtungsanlagen//verwenden.		e
P 242	Nur funkenfreies Werkzeug verwenden.	P 340	[
P 243	Maßnahmen gegen elektrostatische Aufladungen treffen.		e
P 244	Druckminderer frei von Fett und Ölen halten.	P 341	E
P 250	Nicht schleifen/stoßen//reiben.		e
P 251	Behälter steht unter Druck: Nicht durchstechen oder	P 342	E
	verbrennen, auch nicht nach der Verwendung.	P 350	E
P 260	Staub/Rauch/Gas/Nebel/Dampf/Aerosol nicht einatmen.	P 351	E
P 261	Einatmen von Staub/Rauch/Gas/Nebel/Dampf/Aerosol	P 352	1
	vermeiden.	P 353	H
P 262	Nicht in die Augen, auf die Haut oder auf die Kleidung	P 360	ŀ
	gelangen lassen.		ć
P 263	Kontakt während der Schwangerschaft/ und der Stillzeit	P 361	F
	vermeiden.	P 362	ŀ
P 264	Nach Gebrauch gründlich waschen.		1
P 270	Bei Gebrauch nicht essen, trinken oder rauchen.	P 363	ŀ
P 271	Nur im Freien oder in gut belüfteten Räumen verwenden.	P 370	E
P 272	Kontaminierte Arbeitskleidung nicht außerhalb des	P 371	Е
	Arbeitsplatzes tragen.	P 372	E
P 273	Freisetzung in die Umwelt vermeiden.	P 373	ŀ
P 280	Schutzhandschuhe/Schutzkleidung/Augenschutz/		(
	Gesichtsschutz tragen.	P 374	E
P 281	Vorgeschriebene persönliche Schutzausrüstung verwenden.		ć
P 282	Schutzhandschuhe/Gesichtsschild/Augenschutz mit	P 375	١
	Kälteisolierung tragen.		k
P 283	Schwer entflammbare/flammhemmende Kleidung tragen.	P 376	ι
P 284	Atemschutz tragen.	P 377	E
P 285	Bei unzureichender Belüftung Atemschutz tragen.		k
		P 378	
Sichorh	eitshinweise – Reaktion	P 380	
Sichern	PIISNINWPISP - RPAKTION		

Sicherheitshinweise - Reaktion

P 331

P 332

0.0	
P 301	Bei Verschlucken:
P 302	Bei Berührung mit der Haut:
P 303	Bei Berührung mit der Haut (oder dem Haar):
P 304	Bei Einatmen:
P 305	Bei Kontakt mit den Augen:
P 306	Bei kontaminierter Kleidung:
P 307	Bei Exposition:
P 308	Bei Exposition oder falls betroffen:
P 309	Bei Exposition oder Unwohlsein:
P 310	Sofort Giftinformationszentrum oder Arzt anrufen.
P 311	Giftinformationszentrum oder Arzt anrufen.
P 312	Bei Unwohlsein Giftinformationszentrum oder Arzt anrufen.
P 313	Ärztlichen Rat einholen/ärztliche Hilfe hinzuziehen.
P 314	Bei Unwohlsein ärztlichen Rat einholen/ärztliche Hilfe
P 315	Sofort ärztlichen Rat einholen/ärztliche Hilfe hinzuziehen
P 320	Besondere Behandlung dringend erforderlich
1 320	(siehe auf diesem Kennzeichnungsetikett)
P 321	Besondere Behandlung
	(siehe auf diesem Kennzeichnungsetikett).
P 322	Gezielte Maßnahmen
	(siehe auf diesem Kennzeichenetikett)
P 322	Gezielte Maßnahmen
	(siehe auf diesem Kennzeichenetikett).
P 330	Mund ausspülen.

KEIN Erbrechen herbeiführen.

Bei Hautreizung:

P 333	Bei Hautreizung oder -ausschlag:
P 334	In kaltes Wasser tauchen/nassen Verband anlegen.
P 335	Lose Partikel von der Haut abbürsten.
P 336	Vereiste Bereiche mit lauwarmem Wasser auftauen.
	Betroffene Bereiche nicht reiben.
P 337	Bei anhaltender Augenreizung:
P 338	Eventuell vorhandene Kontaktlinsen nach Möglichkeit
	entfernen. Weiter ausspülen.
P 340	Die betroffene Person an die frische Luft bringen und in
	einer Position ruhigstellen, die das Atmen erleichtert.
P 341	Bei Atembeschwerden an die frische Luft bringen und in
D 0 / 0	einer Position ruhigstellen, die das Atmen erleichtert.
P 342	Bei Symptomen der Atemwege:
P 350 P 351	Behutsam mit viel Wasser und Seife waschen.
P 351	Einige Minuten lang behutsam mit Wasser ausspülen. Mit viel Wasser und Seife waschen.
P 353	Haut mit Wasser abwaschen/duschen.
P 360	Kontaminierte Kleidung und Haut sofort mit viel Wasser
1 300	abwaschen und danach Kleidung ausziehen.
P 361	Alle kontaminierten Kleidungsstücke sofort ausziehen.
P 362	Kontaminierte Kleidung ausziehen und vor erneutem
	Tragen waschen.
P 363	Kontaminierte Kleidung vor erneutem Tragen waschen.
P 370	Bei Brand:
P 371	Bei Großbrand und großen Mengen:
P 372	Explosionsgefahr bei Brand.
P 373	KEINE Brandbekämpfung, wenn das Feuer explosive Stoffe/
	Gemische/Erzeugnisse erreicht.
P 374	Brandbekämpfung mit üblichen Vorsichtsmaßnahmen aus
	angemessener Entfernung
P 375	Wegen Explosionsgefahr Brand aus der Entfernung
D 274	bekämpfen.
P 376	Undichtigkeit vermeiden, wenn gefahrlos möglich.
P 377	Brand von ausströmendem Gas: Nicht löschen,
D 270	bis Undichtigkeit gefahrlos beseitigt werden kann.

Sicherheitshinweise - Lagerung

... zum Löschen verwenden.

Umgebung räumen.

P 381	Alle Zündquellen entfernen, wenn gefahrlos möglich.
P 390	Verschüttete Mengen aufnehmen, um Materialschäden zu
	vermeiden.
P 391	Verschüttete Mengen aufnehmen.
P 401	aufbewahren.
P 402	An einem trockenen Ort aufbewahren.
P 403	An einem gut belüfteten Ort aufbewahren.
P 404	In einem geschlossenen Behälter aufbewahren.
P 405	Unter Verschluss aufbewahren.
P 406	In korrosionsbeständigem/ Behälter mit widerstandsfä-
	higer Innenauskleidung lagern.
P 407	Luftspalt zwischen Stapeln/Paletten lassen.
P 410	Vor Sonnenbestrahlung schützen.
P 411	Bei Temperaturen von nicht mehr als °C/ °F
	aufbewahren.
P 412	Nicht Temperaturen von mehr als 50 °C/122 °F aussetzen.
P 413	Schüttgut in Mengen von mehr alskg/lbs
	bei Temperaturen von nicht mehr als °C/ °F
	aufbewahren.
P 420	Von anderen Materialien entfernt aufhewahren

Sicherheitshinweise - Entsorgung

P 422

Inhalt/Behälter ... zuführen.

Inhalt in/unter ... aufbewahren.

Anhang Größen und Größengleichungen

$$\varrho = \frac{m}{V}$$

$$\Leftrightarrow m = \varrho \cdot V$$

$$\Leftrightarrow V = \frac{m}{\rho}$$

Ein Goldbarren der Masse $m = 100 \,\mathrm{g}$ hat das Volumen:

$$V = \frac{100 \,\mathrm{g}}{19,32 \,\mathrm{g/cm^3}}$$
$$= 5,18 \,\mathrm{cm^3}$$

Ein Goldnugget mit dem Volumen $V = 100 \text{ cm}^3$ hat die Masse:

$$m = \frac{19,32 \,\mathrm{g}}{\mathrm{cm}^3} \cdot 100 \,\mathrm{cm}^3$$
$$= 1932 \,\mathrm{g}$$

 $= 1,932 \, kg$

B1 Umgang mit den Größen Masse, Volumen und Dichte

$$m_{t}(Na) = m_{t}(Na^{+})$$

 $m_{t}(A) = m_{t}(A^{z+})$

$$m_{t}(Cl) = m_{t}(Cl^{-})$$

 $m_{t}(B) = m_{t}(B^{z-})$

B2 Die Massen der Atomionen entsprechen den Atommassen

Normbedingungen

 $\vartheta = 0$ °C (T = 273,15 K) und p = 1013,25 hPa

nicht verwechseln mit

Standardbedingungen

 $\vartheta = 25 \,^{\circ}\text{C} \ (T = 298,15 \,\text{K}) \text{ und } p = 1013,25 \,\text{hPa}$

Masse, Volumen und Dichte

Den Umfang einer Stoffportion beschreibt man häufig mit der $Masse\ m$ oder mit dem $Volumen\ V$. Die $Dichte\ \varrho$ ist eine Stoffeigenschaft. Mithilfe der Dichte kann man die Masse einer Stoffportion in das Volumen umrechnen und umgekehrt [B1]. Dabei dürfen die Einheiten nicht vergessen werden.

Teilchenmasse und Stoffmenge

Teilchenmassen $m_{\rm t}$ sind sehr klein. Deshalb gibt man sie in u (von engl. unit, Einheit) an.

Es gilt:
$$1u = 1,66054 \cdot 10^{-24} \text{g}$$

 $1g = 6,02214 \cdot 10^{23} \text{u}$

Die Masse eines Moleküls oder einer Elementargruppe in Ionenverbindungen ergibt sich durch Addition der Atommassen. Die Massen von Atomionen entsprechen den Atommassen, da man die sehr kleine Differenz nicht berücksichtigt, die sich aus der Aufnahme bzw. Abgabe der Elektronen ergibt [B2].

Die Anzahl der Atome, Moleküle oder Ionen ist selbst in sehr kleinen Stoffportionen riesig groß. Deshalb fasst man eine sehr große Anzahl zur Einheit Mol zusammen. Eine Stoffportion, die $6,022 \cdot 10^{23}$ Teilchen enthält, hat die *Stoffmenge n* = 1 mol.

Die Stoffmenge n ist nur ein anderer Name für die Teilchenanzahl N. Der Begriff "Stoffmenge" wird jedoch bevorzugt verwendet, wenn die Teilchenanzahl in Mol angegeben wird. Die Einheit Mol hat den Vorteil, dass mit kleinen Zahlen gerechnet werden kann.

Für die Umrechnung einer beliebigen Teilchenanzahl N in die Stoffmenge n verwendet man die Avogadro-Konstante $N_A = 6,022 \cdot 10^{23} \,\mathrm{mol}^{-1}$.

$$n = \frac{N}{N_{\Delta}}$$

Die molare Masse

Den Quotienten aus der Masse m und der Stoffmenge n einer Stoffportion nennt man molare Masse M.

$$M = \frac{m}{n}$$
 Übliche Einheit: g/mol

Die molare Masse M ist identisch mit der Teilchenmasse $m_{\rm tr}$, sie wird nur in einer anderen Einheit angegeben.

Das molare Volumen

Den Quotienten aus dem Volumen V und der Stoffmenge n einer Stoffportion nennt man molares Volumen $V_{\rm m}$.

$$V_{\rm m} = \frac{V}{n}$$
 Übliche Einheit: l/mol

Gleiche Volumina verschiedener Gase bei gleichem Druck und gleicher Temperatur enthalten annähernd gleich viele Teilchen. Umgekehrt haben Gasportionen mit gleichen Teilchenanzahlen auch gleiche Volumina.

Das molare Volumen von Gasen ist:

- bei 0 °C und 1013 hPa (*Normbedingungen*): $V_m \approx 22,4 \text{ l/mol}$
- bei 20 °C und 1013 hPa:
 V_m ≈ 24 l/mol

Stoffportion	Teilchen (bzw. Elementargruppe)	bzw. molare Masse M		Teilchenanzah bzw. Stoffmer N	
12 g Kohlenstoff	С	12,0 u	12,0 g/mol	6,022 · 10 ²³	1,0 mol
5,6 g Stickstoff	N ₂	28,0 u	28,0 g/mol	1,204 · 10 ²³	0,20 mol
18 g Wasser	H ₂ O	18,0 u	18,0 g/mol	6,022 · 10 ²³	1,0 mol
1,1g Kohlenstoffdioxid	CO ₂	44,0 u	44,0 g/mol	1,506 · 10 ²²	0,025 mol
585 g Natriumchlorid	NaCl	58,5 u	58,5 g/mol	6,022 · 10 ²⁴	10,0 mol

B3 Beispiele für Stoffportion und Teilchenanzahl

Der Massenanteil

Eine Kochsalzlösung mit w = 0.9% enthält $0.9\,\mathrm{g}$ Natriumchlorid in $100\,\mathrm{g}$ Kochsalzlösung. Eine Salzsäure mit w = 25% enthält $25\,\mathrm{g}$ Hydrogenchlorid in $100\,\mathrm{g}$ Salzsäure. Es handelt sich um den *Massenanteil*.

Der Massenanteil w eines Bestandteils A ist der Quotient aus der Masse des Bestandteils m(Bestandteil A) dividiert durch die Gesamtmasse des Gemisches m(Gemisch).

$$w(Bestandteil A) = \frac{m(Bestandteil A)}{m(Gemisch)}$$

Der Massenanteil ist eine Zahl zwischen 0 und 1. Multipliziert man die Zahl mit 100 % (= 1), erhält man den Massenanteil in Prozent.

Die Massenkonzentration

Der Gehalt an Kationen und Anionen in einem Mineralwasser wird häufig in Milligramm pro Liter (mg/l) angegeben. Es handelt sich um die Massenkonzentration.

Die Massenkonzentration β ist der Quotient aus der *Masse* eines Bestandteils A m(Bestandteil A) und dem *Volumen* der Lösung V(Lösung).

$$\beta(\text{Bestandteil A}) = \frac{m(\text{Bestandteil A})}{V(\text{L\"osung})}$$

Mögliche Einheiten: mg/l, g/l, g/m³

Die Volumenkonzentration

Auf den Etiketten alkoholischer Getränke steht der Alkoholgehalt in Prozent. Es handelt sich um die *Volumenkonzentration*. Die Volumenkonzentration σ eines Bestandteils A ist der Quotient aus dem *Volumen* des Bestandteils V(Bestandteil A) dividiert durch das *Gesamtvolumen* des Gemisches V(Gemisch).

$$\sigma(\text{Bestandteil A}) = \frac{V(\text{Bestandteil A})}{V(\text{Gemisch})}$$

Die Volumenkonzentration ist eine Zahl zwischen 0 und 1. Multipliziert man die Zahl mit 100% (= 1), erhält man die Volumenkonzentration in Prozent.

Die Stoffmengenkonzentration

Bei Titrationen ermittelt man Stoffmengen gelöster Stoffe mithilfe von Maßlösungen mit bekannter Stoffmengenkonzentration. Die Stoffmengenkonzentration c ist der Quotient aus der Stoffmenge des gelösten Bestandteils n(Teilchen A) und dem Volumen der Lösung V(Lösung).

$$c$$
(Teilchen A) = $\frac{n$ (Teilchen A)
 V (Lösung)
Übliche Einheit: mol/l

 \Leftrightarrow n(Teilchen A) = c(Teilchen A) · V(Lösung)

Größen

- n: Stoffmenge
- N: Teilchenanzahl
- m: Masse
- *m*₊: Teilchenmasse
- M: molare Masse
- V: Volumen
- V_m: molares Volumen
- ρ: Dichte
- w: Massenanteil
- β : Massenkonzentration
- σ : Volumenkonzentration
- c: Stoffmengenkonzentration

Konzentrationen sind auf das Volumen bezogene Größen

Berechnung einer Stoffmengenkonzentration

Bekannt: Masse eines Bestandteils A,

Volumen der Lösung

Gesucht: Stoffmengenkonzentration der Teilchen des Stoffes A

$$c(\text{Teilchen A}) = \frac{n(\text{Teilchen A})}{V(\text{Lösung})} \tag{1}$$

$$n(\text{Teilchen A}) = \frac{m(\text{Bestandteil A})}{M(\text{Teilchen A})}$$
 (2)

Einsetzen von Gleichung (2) in (1) ergibt:

$$c(\text{Teilchen A}) = \frac{m(\text{Bestandteil A})}{M(\text{Teilchen A}) \cdot V(\text{L\"osung})}$$
(3)

Tipp

Anhand der Einheiten kann man überprüfen, ob beim Hantieren mit den Größengleichungen nicht doch ein Fehler unterlaufen ist.

Beziehung zwischen Massen- und Stoffmengenkonzentration

Die Definition der Massenkonzentration β ist:

$$\beta(\text{Bestandteil A}) = \frac{m(\text{Bestandteil A})}{V(\text{Lösung})}$$
(4)

Oben wurde für die Stoffmengenkonzentration c hergeleitet:

$$c(\text{Teilchen A}) = \frac{m(\text{Bestandteil A})}{M(\text{Teilchen A}) \cdot V(\text{L\"osung})}$$
(3)

Wenn man in Gleichung (3) die Definition (4) einsetzt, ergibt sich:

$$c(\text{Teilchen A}) = \frac{m(\text{Bestandteil A})}{M(\text{Teilchen A}) \cdot V(\text{L\"osung})} = \frac{\beta(\text{Bestandteil A})}{M(\text{Teilchen A})}$$

 \Leftrightarrow $\beta(Bestandteil A) = c(Teilchen A) \cdot M(Teilchen A)$

Anhang Zwischenmolekulare Kräfte

B1 Johannes Diderik van der Waals (1837–1923)

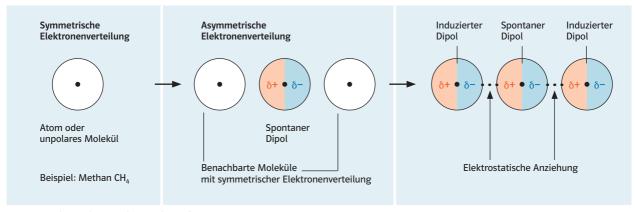
Elektronenpaarbindung schwächere Van-der-Waals-Kräfte zwischen den lodatomen

I₂-Gitter

B3 Molekülgitter von Iod

induzieren von lat. inducere, hervorrufen

Nähern sich zwei Moleküle, kommt es immer zu Wechselwirkungen. Je nach der räumlichen Struktur und der Polarität der Moleküle sind die Wechselwirkungen unterschiedlich stark. Von diesen zwischenmolekularen Kräften hängen die Eigenschaften ab, die ein Stoff hat. Zwischenmolekulare Kräfte sind in der Regel schwächer als chemische Bindungen.


Van-der-Waals-Kräfte. Der niederländische Physiker JOHANNES D. VAN DER WAALS [B1] erkannte, dass zeitweise in einem Atom oder Molekül eine Verschiebung der Ladung auftreten kann [B2]. Kurzzeitig entstehen so eine positive und eine negative Partialladung (Teilladung). Es tritt ein spontaner Dipol auf. Benachbarte Atome oder Moleküle werden

dadurch so beeinflusst, dass in diesen ebenfalls eine unsymmetrische Ladungsverteilung zustande kommt [B2]. In den benachbarten Atomen bzw. Molekülen entstehen also ebenfalls positive und negative Partialladungen. Es liegen induzierte Dipole vor.

Aufgrund der unsymmetrischen Ladungsverteilungen ziehen sich die Atome bzw. Moleküle elektrostatisch an. Diese Wechselwirkung bezeichnet man als *Van-der-Waals-Kräfte*. Beispielsweise treten sie zwischen den Edelgasatomen auf. Die Van-der-Waals-Kräfte sind auch die Ursache für die Ausbildung von Molekülgittern. So ordnen sich lodmoleküle in einem Gitter an [B3].

Dipol-Dipol-Kräfte. In Dipolmolekülen sind die Partialladungen, die durch Elektronegativitätsunterschiede entstehen, unsymmetrisch angeordnet. In solchen Molekülen liegt ein permanenter Dipol vor.

Zwischen Molekülen mit einem permanenten Dipol kommt es aufgrund der unterschiedlichen Ladungsverteilung zu Wechselwirkungen. Diese sind stärker als die Van-der-Waals-Kräfte, aber schwächer als die Anziehungskräfte, die zwischen Ionen und Dipolen bestehen. Beispiele für Verbindungen, deren Moleküle permanente Dipole darstellen, sind Chlormethan (CH₃Cl), die Interhalogene Chlorfluorid (CIF) und Bromfluorid (BrF), sowie verschiedene Etherverbindungen, wie z. B. Dimethylether (CH₃OCH₃) [B4].

B2 Entstehung der Van-der-Waals-Kräfte

B4 Dipol-Dipol-Kräfte am Beispiel von Dimethylethermolekülen

Dipol-Ionen-Kräfte. Salze bestehen aus positiv und negativ geladenen Ionen. Diese können mit Dipolmolekülen in Wechselwirkung treten, z. B. beim Lösen in Wasser. Die Kationen ziehen dabei den negativ geladenen Pol der Dipolmoleküle an, die Anionen den positiven [B5]. Erst unter Zufuhr von Energie lösen sich die Teilchen wieder voneinander.

Wasserstoffbrücken. Sind in einem Molekül Wasserstoffatome an Sauerstoff-, Stickstoff- oder Fluoratome gebunden, so haben die Wasserstoffatome aufgrund der großen Elektronegativitätsdifferenz besonders große positive Partialladungen. Die Wasserstoffatome treten in Wechselwirkung mit den nicht bindenden Elektronenpaaren der Sauerstoff-, Stickstoff- bzw. Fluoratome. Es ist eine Wasserstoffbrücke entstanden [B6, B7].

B5 Dipol-lonen-Kräfte in einer Natriumchloridlösung

B6 Wasserstoffbrücken bei Fluorwasserstoffmolekülen

B7 Wasserstoffbrücken bei Wassermolekülen

Allgemein lässt sich Folgendes sagen: Wasserstoffbrücken werden zwischen Molekülen ausgebildet, in denen Wasserstoffatome an stark elektronegative Atome mit mindestens einem freien Elektronenpaar gebunden sind.

Zwischen einzelnen Teilchen können Wechselwirkungen auftreten. Beruhen sie auf induzierten Dipolen, spricht man von Van-der-Waals-Kräften. Bei kleinen Molekülen sind die Van-der-Waals-Kräfte schwach. Haben die Moleküle permanente Dipole, sind die zwischenmolekularen Kräfte meist stärker. Diese Dipol-Dipol-Kräfte sind jedoch nicht so stark wie die Dipol-Ionen-Kräfte zwischen permanenten Dipolen und Ionen. Daneben gibt es noch die Wasserstoffbrücken, die meist stärker sind als Van-der-Waals-Kräfte.

- A1 Nennen Sie die Ihnen bekannten zwischenmolekularen Kräfte und geben Sie jeweils ein Beispiel für einen Stoff an, bei dem diese wirken.
- A2 Entscheiden Sie, ob sich zwischen Fluorwasserstoffmolekülen und Wassermolekülen Wasserstoffbrücken ausbilden können. Begründen Sie Ihre Entscheidung.

Anhang Tabellen

Kohlenstoffverbindungen und funktionelle Gruppe	n	
Namen der Stoffklassen	Beispiele	
Strukturformeln und Namen der funktionellen Gruppen	Namen und Strukturformel	n
Alkene		н. н
Ungesättigte Fettsäuren	Ethen	H H
C=C-Doppelbindung $C=C$	Ölsäure ((<i>Z</i>)-Octadec-9-en-säure)	$CH_{3}(CH_{2})_{7}$ $(CH_{2})_{7}COOH$ $C = C'$ H H
Alkohole	Ethanol	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Hydroxygruppe $\overline{\underline{0}}-H$	Propantriol (Glycerin)	H ₂ C — CH — CH ₂
Aldehyde	Methanal (Formaldehyd)	$H-C_{H}^{0}$
Aldehydgruppe $-c$	Ethanal (Acetaldehyd)	H-C-C N
Ketone	Propanon (Aceton)	H
Ketogruppe $ - \begin{matrix} & & & & & & \\ & & & & \\ & - & & & \\ & & & \end{matrix} \begin{vmatrix} & & & \\ & & & $	Butanon (Ethylmethylketon)	H H 10 H H C C C C C C H I I I H H H
Carbonsäuren	Methansäure (Ameisensäure)	$H-C \stackrel{\overline{O}}{\searrow} -H$
Carboxygruppe $-c$ $\underline{\bar{o}}_{-H}$	Ethansäure (Essigsäure)	H
Ester (Carbonsäureester)	Ethansäurebutylester	H O\
Fette (Fettsäureglycerinester)	(Essigsäurebutylester, Butylethanoat, Butylacetat)	11 11 11 11
Estergruppe $-c$ $\overline{\underline{o}}$ $-R$	1-Ölsäure-2-linolsäure- 3-linolensäure-glycerinester	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Naturkonstanter	1
Planck- Konstante	$h = 6,62606896 \cdot 10^{-34} \text{ J} \cdot \text{s}$
Lichtgeschwindig- keit im Vakuum	c = 299792458 m·s ⁻¹
Avogadro- Konstante	$N_{\rm A} = 6,02214179 \cdot 10^{23} \text{ mol}^{-1}$
Elementar- ladung	$e = 1,602176487 \cdot 10^{-19} \text{ A} \cdot \text{s}$
Faraday- Konstante	$F = N_A \cdot e = 96485,34 \text{ A} \cdot \text{s} \cdot \text{mol}^{-1}$
Boltzmann- Konstante	$k = 1,3806504 \cdot 10^{-23} \text{ J} \cdot \text{K}^{-1}$
Universelle Gaskonstante	$R = N_A \cdot k = 8,314472 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$

	elfache n Einh	Grie (nac					
Voi	rsatz	Faktor	Voi	satz	Faktor	1/2	hem
у	Yocto	10-24	da	Deka	10	1	mor
z	Zepto	10-21	h	Hekto	10 ²	2	di
а	Atto	10-18	k	Kilo	10 ³	3	tri
f	Femto	10-15	M	Mega	10 ⁶	4	tetra
р	Piko	10-12	G	Giga	10 ⁹	5	pen
n	Nano	10-9	Т	Tera	1012	6	hexa
μ	Mikro	10-6	Р	Peta	10 ¹⁵	7	hep
m	Milli	10-3	Е	Exa	10 ¹⁸	8	octa
С	Zenti	10-2	Z	Zetta	10 ²¹	9	non
d	Dezi	10-1	Υ	Yotta	1024	10	deca

	chische Zah ch chemische		
1/2	hemi	11	undeca
1	mono	12	dodeca
2	di	13	trideca
3	tri	14	tetradeca
4	tetra	15	pentadeca
5	penta	16	hexadeca
6	hexa	17	heptadeca
7	hepta	18	octadeca
8	octa	19	enneadeca
9	nona	20	icosa
10	deca		(eicosa)

Größen und Ein	heiten				
Name	Zeichen	Größe, Beziehung	Erläuterungen	Einheitenname	Einheitenzeichen
Masse	т			[Kilo]gramm Atomare Masseneinheit	[k]g 1u = 1,661 · 10 ⁻²⁴ g
Volumen	V		Produkt aus drei Längen	Kubik[zenti]meter Liter Milliliter	[c]m ³ 1l = 1 dm ³ 1ml = 1cm ³
Anzahl	N			Eins	1
Stoffmenge	п	$n = \frac{N}{N_A}$	$N_A = 6,022 \cdot 10^{23} / \text{mol}$ (Avogadro-Konstante)	Mol	mol
Dichte	Q	$Q = \frac{m}{V}$	m: Masse der StoffportionV: Volumen der Stoffportion		g/cm ³ 1g/l = 0,001g/cm ³
molare Masse	М	$M = \frac{m}{n}$	m: Masse der Reinstoffportionn: Stoffmenge der Reinstoffportion		g/mol
molares Volumen	V _m	$V_m = \frac{V}{n}$	V: Volumen der Reinstoffportionn: Stoffmenge der Reinstoffportion		l/mol
Stoffmengen- konzentration	с	$c = \frac{n}{V}$	n: Stoffmenge einer TeilchenartV: Volumen der Mischung		mol/l
Massenanteil	W	$W_1 = \frac{m_1}{m_S}$	m_1 : Masse des Bestandteils 1 m_s : Summe aller Massen (Gesamtmasse)	Prozent	$\frac{1}{1\%} = \frac{1}{100}$
Volumenanteil	φ	$\varphi_1 = \frac{V_1}{V_S}$	V_1 : Volumen des Bestandteils 1 $V_{\rm S}$: Summe aller Volumina vor dem Mischen	Prozent	$\frac{1}{1\%} = \frac{1}{100}$
Kraft	F	$F = m \cdot a$	a: Beschleunigung	Newton	$1N = \frac{1kg \cdot m}{s^2}$
Druck	р	$p = \frac{F}{A}$	A: Flächeninhalt	Pascal Bar Millibar	$1Pa = 1\frac{N}{m^2}$ $1bar = 10^5 Pa$ $1mbar = 1hPa$
Energie	Ε	$W = F \cdot s$	Energie ist die Fähigkeit zur Arbeit <i>W</i> s: Weglänge	Joule Kilojoule	1J = 1N · m kJ
Celsiustemperatur	t, ð			Grad Celsius	°C
thermodynamische Temperatur	Т	$\frac{T}{K} = \frac{t}{^{\circ}C} + 273,15$		Kelvin	К
elektrische Ladung	Q			Coulomb	С
elektrische Strom- stärke	I	$I = \frac{Q}{t}$	Q: Ladung t: Zeit	Ampere	$1A = 1\frac{C}{s}$

	7			Em3	ပ္	ပ္		70			E .	ې	ပ
Name	Elementsymbol	Ordnungszahl	Atommasse in u ⁴⁾	Dichte ¹⁾ in g/cm³ (Gase: g/l)	Schmelz- temperatur in °	Siede- temperatur in °	Name	Elementsymbol	Ordnungszahl	Atommasse in u ⁴⁾	Dichte ¹⁾ in g/cm ³ (Gase: g/l)	Schmelz- temperatur in	Siede- temperatur in °C
Actinium	Ac	89	227,0278*	10,1	1050	3200	Neon	Ne	10	20,1797	0,84	-249	-246
Aluminium	Al	13	26,981538	2,70	660	2467	Nickel	Ni	28	58,6934	8,90	1455	2730
Antimon	Sb	51	121,760	6,68	630	1750	Niob	Nb	41	92,90638	8,57	2468	4742
Argon	Ar	18	39,948	1,66	-189	-186	Osmium	Os	76	190,23	22,5	2700	5300
Arsen	As	33	74,92160	5,72	613 s	7	Palladium	Pd	46	106,42	12,0	1554	2970
Astat	At	85	209,9862*	,	302	337	Phosphor	Р	15	30,973761	1,82 3)	44 3)	280
Barium	Ba	56	137,327	3,51	725	1640	Platin	Pt	78	195,078	21,4	1772	3827
Beryllium	Be	4	9,012182	1,85	1278	2970	Polonium	Po	84	208,9824*	9,4	254	962
Bismut	Bi	83	208,98038	9,8	271	1560	Praseodym	Pr	59	140,90765	6,77	931	3512
Blei	Pb	82	207,2	11,4	327	1740	Protactinium	Pa	91	231,03588	15,4	1840	4030
Bor	В	5	10,811	2,34	2300	2550	Quecksilber	Hg	80	200,59	13,55	-39	356
Brom	Br	35	79,904	3,12	-7	59	Radium	Ra	88	226,0254*	5,0	700	1140
Cadmium	Cd	48	112,411	8,65	321	765	Radon	Rn	86	222,0176*	9,23	-71	-62
Caesium	Cs	55	132,90545	1,88	28	669	Rhenium	Re	75	186,207	20,5	3180	5627
Calcium	Ca	20	40,078	1,54	839	1484	Rhodium	Rh	45	102,90550	12,4	1966	3727
Cer	Ce	58	140,116	6,65	799	3426	Rubidium	Rb	37	85,4678	1,53	39	686
Chlor	Cl	17	35,453	2,99	-101	-35	Ruthenium	Ru	44	101,07	12,3	2310	3900
Chrom	Cr	24	51,9961	7,20	1857	2672	Sauerstoff	0	8	15,9994	1,33	-219	-183
Cobalt	Co	27	58,933200	8,9	1495	2870	Scandium	Sc	21	44,955910	3,0	1541	2831
	Fe					2750	Schwefel	S				119 (mo)	444
Eisen	F	26 9	55,845	7,87	1535				16	32,065	2,07 (rh)		
Fluor			18,9984032	1,58	-219	-188	Selen	Se	34	78,96	4,81	217	685
Francium	Fr	87	223,0197*	T 00	27	677	Silber	Ag	47	107,8682	10,5	962	2212
Gallium	Ga	31	69,723	5,90	30	2403	Silicium	Si	14	28,0855	2,32	1410	2355
Germanium	Ge	32	72,64	5,32	937	2830	Stickstoff	N	7	14,0067	1,17	-210	-196
Gold	Au	79	196,96655	19,32	1064	3080	Strontium	Sr	38	87,62	2,60	769	1384
Hafnium	Hf	72	178,49	13,3	2227	4602	Tantal	Та	73	180,9479	16,6	2996	5425
Helium	He	2	4,002602	0,17	−272 p	-269	Technetium	Tc*	43	97,9072*	11,5	2172	4877
Indium	In	49	114,818	7,30	156	2080	Tellur	Te	52	127,60	6,0	449	990
lod	ı	53	126,90447	4,93	113	184	Thallium	Tl	81	204,3833	11,8	303	1457
Iridium	lr	77	192,217	22,41	2410	4130	Thorium	Th	90	232,0381	11,7	1750	4790
Kalium	K	19	39,0983	0,86	63	760	Titan	Ti	22	47,867	4,51	1660	3287
Kohlenstoff	С	6	12,0107	2,25 ²⁾	3650 s ²⁾	-	Uran	U	92	238,02891	19,0	1132	3818
Krypton	Kr	36	83,798	3,48	-157	-152	Vanadium	V	23	50,9415	5,96	1890	3380
Kupfer	Cu	29	63,546	8,92	1083	2567	Wasserstoff	Н	1	1,00794	0,083	-259	-253
Lanthan	La	57	138,9055	6,17	921	3457	Wolfram	W	74	183,84	19,3	3410	5660
Lithium	Li	3	6,941	0,53	180	1342	Xenon	Xe	54	131,293	5,49	-112	-107
Magnesium	Mg	12	24,3050	1,74	649	1107	Yttrium	Υ	39	88,90585	4,47	1522	3338
Mangan	Mn	25	54,938049	7,20	1244	1962	Zink	Zn	30	65,409	7,14	419	907
Molybdän	Мо	42	95,94	10,2	2610	5560	Zinn	Sn	50	118,710	7,30	232	2270
Natrium	Na	11	22,989770	0,97	98	883	Zirconium	Zr	40	91,224	6,49	1852	4377

Die Elemente mit den Ordnungszahlen 60 bis 71 und ab 93 sind nicht aufgeführt.

- 1) Dichteangaben für 20 °C und 1013 hPa
 2) Angaben gelten für Graphit; Diamant: Schmelztemperatur 3550 °C, Dichte 3,51 g/cm³
 3) Angaben gelten für weißen Phosphor; roter Phosphor: Schmelztemperatur 590 °C (p), Dichte 2,34 g/cm³
 4) Atomare Masseneinheit u: 1u = 0,000 000 000 000 000 000 001 060 54 g (*Atommasse des langlebigsten Isotops)
- s = sublimiert
- p = unter Druck

 = Werte nicht bekannt