Impulse Physik Oberstufe eWissen
Demoversion-Bild
1 Gravitationsfeld

Bestimmung der Gravitationskonstante nach Cavendish


V1

Gravitationsdrehwaage

In diesem Versuch wird die Gravitationskonstante γ mit Hilfe der Gravitationsdrehwaage bestimmt.

Material:

Gravitationsdrehwaage, Laser, Uhr, große Skala

Durchführung:

Aufbau der Gravitationsdrehwaage: Im Ge­häuse der Drehwaage hängt an einem dünnen Draht ein leichter Stab, an dessen Enden sich zwei kleine Bleikugeln befinden. In der Mitte des Stabes, der die kleinen Kugeln trägt, ist ein Spiegel angebracht.

Prinzip der Drehwaage mit je zwei Kugeln mit kleiner bzw. großer Masse
Marzell, Alfred, Schwäbisch Gmünd

Außerhalb der Drehwaage stehen den beiden kleinen Kugeln auf gleicher Höhe große Blei­kugeln gegenüber. Sie sind auf einem Dreh­gestell angebracht, das es ermöglicht, die Position der großen Kugeln in Bezug auf die kleinen Kugeln zu verändern.

Die großen Bleikugeln werden zunächst in Position A gebracht.

Marzell, Alfred, Schwäbisch Gmünd

Hier hat jede der großen Kugeln genau denselben Abstand zu den ­beiden kleinen Kugeln. Der Laser wird auf den Spiegel gerichtet, der den Lichtstrahl auf eine 10m entfernte Skala lenkt. Auf diese Weise werden auch sehr kleine Drehungen des Spiegels messbar. In Position A kann keine Drehbewegung registriert werden.

Die großen Kugeln werden nun vorsichtig in Position B geschwenkt. Der Lichtzeiger zeigt an, dass sich die kleinen Kugeln auf die großen zu bewegen.

Auswertung:

Gemessen wird der zurückgelegte Weg x des Lichtzeigers auf der Skala in Abhängigkeit von der Zeit t.

Bestimmung der Beschleunigung mit Hilfe der Bewegung des Lichtzeigers
Marzell, Alfred, Schwäbisch Gmünd

Die Tabelle enthält mögliche Messwerte:

t in s

20

30

40

50

60

x in 10-3m

3

8

15

24

34

Mit den folgenden Näherungen lässt sich aus der Messreihe zunächst die Kraft zwischen den Kugeln bestimmen. Während der Messzeit bewegen sich die kleinen Kugeln nur um eine kleine Weglänge, sodass der Abstand zu den großen Kugeln als konstant angesehen werden kann. Daher kann von einer konstanten Kraft und einer konstanten Beschleunigung ausgegangen werden. Demnach gilt das Zeit-Ort-Gesetz der beschleunigten Bewegung  s=a2t2,  wobei s die Weglänge ist, die eine kleine Kugel in der Zeitdauer t zurücklegt. Bei bekannter Weglänge s lässt sich nach a=2st2 die Beschleunigung ermitteln.

Wenn die kleine Kugel die sehr kleine Weg­länge s zurücklegt, bewegt sich der Lichtzeiger auf der Skala um die messbare Weglänge x. Aus der Geometrie der Versuchsanordnung ergibt sich folgender Zusammenhang: ​​ ​ 

12xl=sd, d. h., es ist: s=12xdl

Für die Beschleunigung erhält man dann: a=xdlt2

Die Versuchsanordnung liefert folgende Werte:

  • Abstand Spiegel-Skala: l=10m

  • Länge des Querstange: 2d=10cm

  • Masse der großen Kugel: m2=1,5kg

  • Abstand der Mittelpunkte von großer und kleiner Kugel: r=4,5cm

Setzt man nun die Messwerte für x ein, er­geben sich folgende Beschleunigungswerte:

t in s

20

30

40

50

60

a in 10-8ms2

3,8

4,4

4,7

4,8

4,7

Der Mittelwert für die Beschleunigung berechnet sich zu a=4,5108ms2.

Die beschleunigende Kraft F=m1a stimmt mit der Gravitationskraft zwischen der großen und der kleinen Kugel überein. Aus ​​

m1a=γm1m2r2 folgt: γ=ar2m2

Der Abstand r der Mittelpunkte von großer und kleiner Kugel hat sich während der Bewegung kaum verändert, denn die von den ­Kugeln zurückgelegte Weglänge s ist sehr viel kleiner als r. Man darf daher von einem konstanten Abstand r=4,5cm ausgehen.

Mit der Masse m2=1,5kg der großen Kugel errechnet man schließlich für die Gravitationskonstante den Wert γ=6,110-11m3kgs2

Dieser experimentell bestimmte Wert ist zu klein. Ursache dafür sind die Kräfte, die die großen Kugeln auf die weiter entfernten kleinen Kugeln ausüben und die der Bewegung ent­gegenwirken. Genauer gilt für die Gravitationskonstante: γ=6,6710-11m3kgs2